\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
1 (a) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
(saturated) - all (carbon to carbon) bonds are single \\
/ no (carbon to carbon) double bonds \\
M1 - (compounds/substances/molecules) containing hydrogen and carbon (atoms/elements) \\
M2 - only \\
C \(\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)\)
\end{tabular} \& \begin{tabular}{l}
accept no (carbon to carbon) multiple bonds ignore any references to hydrogen \\
reject atoms/elements/ions/mixture in place of compounds \\
reject compounds/substances/molecules in place of atoms/elements \\
accept other terms with same meaning, e.g. solely, exclusively, just \\
M2 DEP on mention of hydrogen and carbon / C and H and no other element
\end{tabular} \& \begin{tabular}{l}
\[
1
\] \\
1 \\
1 \\
1
\end{tabular} \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\mathrm{C}_{8} \mathrm{H}_{18}+12.5 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}
\] \\
M1 - all formulae correct \\
M2 - balanced using correct formulae \\
carbon monoxide
\end{tabular} \& \begin{tabular}{l}
accept multiples \\
If both name and formula given, mark name only accept correct formula
\end{tabular} \& 2

1 \\
\hline
\end{tabular}

Question number	Answer	Notes	Marks
1 (c)	(i)	(provides an alternative pathway of) lower activation energy	Accept (molecules adsorb onto catalyst and covalent) bonds weakened
(ii)	silica/silicon dioxide/alumina/aluminium oxide accept correct formulae accept aluminosilicate(s) accept zeolite(s) ignore silica oxide and alumina oxide If both name and formula given, mark name only Accept structural or displayed formula	1	
(iii)	$\mathrm{C}_{2} \mathrm{H}_{4}$	accept ethylene	1

Question number	Answer	Accept	Reject	Marks
2 (a) (i) (ii) (iii)	A C C	Methane Ethene Ethene		$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
(b)	M1 - (molecular) $\mathrm{C}_{4} \mathrm{H}_{10}$ M2 - (empirical) $\mathrm{C}_{2} \mathrm{H}_{5}$ ECF from molecular formula	$\begin{aligned} & \mathrm{H}_{10} \mathrm{C}_{4} \\ & \mathrm{H}_{5} \mathrm{C}_{2} \end{aligned}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(c) (i) (ii)	M1 - (name) alkane(s) M2 - (general formula) $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$ IGNORE bond angles		missing Hs and bonds	1 1 1

(d)	M1 - incomplete combustion/insufficient oxygen	lack of oxygen /less oxygen / only $11 / 2$ oxygen (in equation)	
M2 - toxic/poisonous/causes death IGNORE dangerous/harmful	M3 - reduces the capacity of the blood to carry oxygen IGNORE references to suffocation/cannot breathe IGNORE blood carries no oxygen	correct references to haemoglobin /blood carries less oxygen/blood does not release oxygen as easily	1

(Total marks for Question 2 = 11 marks)

Question number	Answer	Accept	Reject	Marks
3 (a)	large hydrocarbons/alkanes/molecules become small ones IGNORE references to forming alkenes/ethene/ more useful molecules	(large) hydrocarbons or alkanes or molecules become smaller ones long chains become short chains	references to polymers	1
(b)	M1 - (add to) bromine (water)/ Br_{2} IGNORE Br M2 - (bromine) decolourised/turns colourless IGNORE starting colour and clear M2 dep on M1, but can be scored for a near miss in M1,eg Br or bromide (water)	(acidified) potassium manganate(VII) decolourised/turns colourless		1 1
(c)	M1 - (catalyst) silica / silicon dioxide / alumina / aluminium oxide N.B. if both name and formula given, mark the name only $\text { M2 - } 600-700 \cong \mathrm{C}$	correct formula aluminosilicate / zeolite any value or range within this range equivalent temperatures in Kelvin		1 1

Question number	Answer	Accept	Reject	Marks
4 (a)	M1 (molecules/compounds/substances) with the same molecular formula/number of each type of atoms IGNORE chemical formula/same compound M2 (but) different structural formulae/different displayed formulae/different structures	hydrocarbons atoms arranged differently	elements/atoms general formula/empirical formula for M1 only	
(b)	D			1
(c) (i) (ii)	M1 $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n}$ M1 double bond between two left hand end carbon atoms M2 single bond between each pair of rest of carbon atoms Penalise max 1 mark for any extra bond shown	letters other than n , e.g.	$\mathrm{C}_{\mathrm{n}}+\mathrm{H}_{2 n}$	1 1 1
(d)	M1 addition M2 orange M3 colourless IGNORE clear/transparent/looks like water	additional yellow/brown	red, either on its own or in combination with any other colour	1 1 1
(e)	M1 saturated - all (carbon to carbon) bonds are single /contains only (carbon to carbon)	does not contain any multiple/double bonds		1

| | single bonds
 M2 unsaturated - contains (carbon to carbon)
 double/multiple
 bond(s) | | 1 |
| :---: | :--- | :--- | :--- | :---: |
| | | | |

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
5 (a) (i) \\
(ii) \\
(iii) \\
(iv)
\end{tabular} \& \& \begin{tabular}{l}
Accept \(\mathrm{H}_{4} \mathrm{C}\) \\
Accept \(\mathrm{H}_{6} \mathrm{C}_{2}\) \\
Accept \(\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3} / \mathrm{H}_{3} \mathrm{C}\) -
\[
\mathrm{CH}_{2}-\mathrm{CH}_{3}
\]
\end{tabular} \& \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
alkane(s)
\[
\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}
\] \\
similar chemical properties / characteristics / reactions / behaviour \\
same functional group \\
(neighbouring members) differ by \(\mathrm{CH}_{2}\) \\
gradation/gradual change/trend in physical properties
\end{tabular} \& \begin{tabular}{l}
Accept \(x\) and other letters in place of \(n\) \\
Accept answers like \(\mathrm{C}_{n} \mathrm{H}_{2 n}+2\) Ignore brackets that still give same answer \\
Accept 'same chemical properties' but ignore a specific example, eg all react with oxygen \\
Accept 'methylene group' \\
Accept gradation/gradual change/increase/decrease in specified property, eg boiling point \\
Reject same / similar physical properties \\
Accept any two for 1 mark each Accept two answers in lines 1 or 2
\end{tabular} \& 1
1

2 \\
\hline
\end{tabular}

5 (c) (i)	$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$	All formulae correct Ignore balanced nitrogen on both sides Balancing dep on M1 Ignore state symbols Accept fractions and multiples (ii)	carbon / C Iccept soot Inore graphite Reject coke Award 1 for both correct answers in wrong order	1

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 5 (d) \&
 \& \begin{tabular}{l}
Accept in either order \\
Award 1 mark for two correct isomers as structural formulae \\
Award 1 mark for two correct isomers as skeletal formulae \\
I gnore names
\end{tabular} \& 1

1 \\

\hline | (e) (i) |
| :--- |
| (ii) |
| (iii) | \& | UV (light) / ultraviolet (light) |
| :--- |
| bromomethane $\mathrm{CH}_{4}+\mathrm{Br}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Br}+\mathrm{HBr}$ | \& | Accept sunlight Ignore ref to temperature |
| :--- |
| Accept 1-bromomethane / methyl bromide / monobromomethane Ignore hyphens / spaces |
| Award M 1 for $\mathrm{CH}_{3} \mathrm{Br}$ Award M2 for other formulae and correct balancing Max 1 for error in symbol e.g. BR, br Ignore state symbols |
| Accept further bromination in (ii) and (iii) | \& | 1 |
| :--- |
| 1 |
| 1 1 | \\

\hline
\end{tabular}

Total 18 marks

